1. **CHEMICAL PRODUCT and EMERGENCY TELEPHONE CONTACT**

 Product Name: Anhydrous Ammonia
 Chemical Family: Inorganic Nitrogen Compound
 Synonyms: Ammonia, Liquid Ammonia, Nitro-Sil, Spirit of Hartshorn, NH₃
 Formula: NH₃

 EMERGENCY TELEPHONE NUMBER
 CHEMTREC: 800-424-9300

2. **COMPOSITION/INFORMATION ON INGREDIENTS**

<table>
<thead>
<tr>
<th>Ingredient Name/CAS Number</th>
<th>Concentration</th>
<th>Exposure Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia #7664-41-7</td>
<td>99-100%</td>
<td>25 ppm TWA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 ppm STEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ppm PEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 ppm IDLH</td>
</tr>
</tbody>
</table>

3. **HAZARDS IDENTIFICATION**

 EMERGENCY OVERVIEW
 Colorless gas and liquid (liquid under pressure). Vapor is toxic and irritating to eyes, nose, throat and skin. Liquid will burn skin and eyes and cause frostbite. Vapor is flammable under limited conditions. Use water to control fire and disperse vapors. Do not put water on liquid ammonia.

 POTENTIAL HEALTH EFFECTS

 Primary Routes of Entry: Inhalation, skin contact/absorption and eye contact.

 General Acute Exposure: Anhydrous ammonia reacts with moisture in mucosal surfaces (eyes, skin, and respiratory tract) to produce ammonium hydroxide, which may cause caustic injury. The severity of injury depends upon the concentration and duration of exposure. The extent of injury ranges from mild cough to laryngeal edema and life-threatening pulmonary edema.
Inhalation:
Acute Exposure: Ammonia is toxic and a severe irritant of the respiratory tract. It may cause a running nose, coughing, chest pain, cessation of respiration and death. It may cause severe breathing difficulties, which may be delayed in onset. ADDITIONAL MEDICAL INFORMATION: Bronchospasm, laryngitis, tracheitis, wheezing, dyspnea, and laryngeal stridor may be noted. Mucosal burns to the tracheobronchial tree, Pulmonary Edema, and associated hypoxemia frequently occur following exposure to concentrated ammonia.

Chronic Exposure: Chronic cough, asthma, and lung fibrosis has been reported.

Skin:
Acute Contact: Ammonia is a severe irritant of the skin. Skin exposure to high concentrations of the gas may cause burning and blistering. Contact with liquid may cause severe skin burns. ADDITIONAL MEDICAL INFORMATION: Concentrated ammonia may produce liquefaction necrosis and deep penetrating burns.

Chronic Contact: Dermatitis has been reported.

Eye:
Acute Contact: Exposure to the eyes (>700 ppm) may cause temporary or permanent blindness. ADDITIONAL MEDICAL INFORMATION: Eye exposure may result in conjunctivitis, lacrimation and/or corneal irritation. Total corneal epithelial loss may occur.

Neurologic:
Acute Exposure: An altered mental status (coma) may be seen, but is not characteristic unless hypoxemia occurs.

Chronic Exposure: Headache and somnolence have been reported.

Gastrointestinal:
Acute Exposure: Nausea and vomiting occurs frequently following ingestion. Swelling of the lips, mouth, and larynx, and oral or esophageal burns may occur if concentrated ammonia solutions are ingested.

Hepatic:
Chronic Exposure: Liver congestion may occur.

Genitourinary:
Acute Exposure: Urinary retention may occur.

Chronic Exposure: Calcification and epithelial proliferation of the renal tubules, congestion of the kidneys, and degenerative changes in suprarenal glands may occur.

Notetothephysician: Pneumonitis should be anticipated after inhalation or ingestion. If severe exposure is suspected, observe for 48-72 hours for delayed pulmonary edema.
Carcinogenicity:
 NTP: ... Not Listed
 IARC: ... Not Listed
 OSHA: ... Not Regulated

Medical Conditions Aggravated by Exposure: Chronic respiratory or skin disease.

4. FIRSTAIDMEASURES

First Aid for Eyes: Immediately flush eyes with copious amounts of tepid water for at least 15 minutes. If irritation, pain, swelling, excessive tearing, or light sensitivity persists, the patient should be seen in a health care facility and referral to an ophthalmologist considered.

First Aid for Skin: Immediately flush exposed area with copious amounts of tepid water for at least 15 minutes followed by washing area thoroughly with soap and water. The patient should be seen in a health care facility if irritation or pain persists.

First Aid for Inhalation: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. If trained to do so administer supplemental oxygen with assisted ventilation as required. Administer artificial respiration if patient is not breathing.

First Aid for Ingestion: Call a physician. If conscious, give the patient 4 to 8 ounces of milk or water to drink immediately. Do not induce vomiting.

Caution: Clothing frozen to the skin should be thawed before being removed.

5. FIREFIGHTINGMEASURES

Flash Point: Not Applicable
Lower Flammable Limit: 15.5 % Volume in Air
Upper Flammable Limit: 27.0 % Volume in Air
Autoignition Temperature 1204° F, 651°C

Extinguishing Media: Stopping the flow of gas rather than extinguishing the fire is usually the best procedure to follow when escaping gas is burning.
 Small Fire: Dry chemical or CO₂
 Large Fire: Water spray, fog or foam

Special Fire Fighting Procedures:
 a. Do not get water inside container.
 b. Move container from fire area if you can do it without risk.
 c. Apply cooling water to sides of containers that are exposed to flames until well after fire is out. Stay away from ends of tanks due to exploding potential when tanks are involved in a fire.
 d. Isolate area until gas has dispersed.
e. Use water spray to control vapors.
f. Positive pressure self-contained breathing apparatus (SCBA) should be used when there is a potential for inhalation of vapors and/or fumes.
g. Chemical protective clothing that is safe for use with ammonia, involved in a fire, should be worn.

CAUTION:

a. Structural fire fighters protective clothing and SCBA used in conjunction with water spray will provide only limited protection for short-term exposure to ammonia vapors.
b. Liquid ammonia may cause protective equipment to become brittle.
c. Use of welding or flame cutting equipment on or in ammonia container is not recommended unless all ammonia has been purged, rinsed with water, and any oil residue removed.
d. Runoff from fire control or dilution water may cause pollution.

6. ACCIDENTAL RELEASE MEASURES

Spill or Leak Measures: Stop leak if you can do so without risk. Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind, out of low areas, and ventilate closed spaces before entering. Evaluate the affected area to determine whether to evacuate or shelter-in-place by taping windows and doors, shutting off outside air intake (attic fans, etc.), and placing a wet towel or cloth over the face (if needed). Self-contained breathing apparatus (SCBA) and structural firefighter’s protective clothing used in conjunction with water spray will provide limited protection in outdoor releases for short-term exposure. Fully encapsulating, vapor-protective clothing should be worn for spills and leaks with no fire. Use water spray to control vapors. Mixing of water and liquid ammonia will increase vaporization rate. Do not put water on liquid ammonia unless more than 100 volumes of water are available for each volume of liquid ammonia.

CAUTION:

a. Personal protective clothing may become brittle when exposed to liquid ammonia.
b. Runoff from vapor control or dilution may cause pollution.

Determining Spill Size: Generally, a small spill is one that involves a single, small Package (i.e. up to a 55 gallon drum), small cylinder, or a small (non-continuing) leak from a large container.

Small Spill:

a. Flush area with flooding amounts of water.
b. First isolate 100 feet in all directions and then protect persons downwind 0.1 miles during daylight and 0.2 miles at night.

Large Spill:

a. Dike far ahead of liquid spill for later disposal.
b. Follow local emergency protocol for handling.
c. First isolate 300 feet in all directions, than protect persons downwind 0.2 miles during daylight and 0.5 miles at night.
7. HANDLINGANDSTORAGE

Follow the current ANSI-K61.1 Standard, “Safety Requirements for the Storage and Handling of Anhydrous Ammonia”, or applicable Ammonia Manufacturing Industry Standards.

Handling Precautions: Use proper personal protective equipment when working with or around ammonia. See Section 8.

8. EXPOSURECONTROLS,PERSONALPROTECTION

Respiratory Protection Requirements:

<25 ppm: No protection required.

25 to 35 ppm: Protection required if the daily TWA is exceeded.

35 to 50 ppm: Protection required if exposed for more than 15 minutes.

50 to 250 ppm: Minimum of an air-purifying respirator equipped with ammonia canister(s) or cartridge(s).

250 to 300 ppm: Minimum of a full-face air-purifying respirator equipped with ammonia canister(s) or cartridge(s).

>300 ppm: A fresh air supply system must be used (i.e. positive pressure self contained breathing apparatus).

Skin Protection Requirements: Skin protection is required for exposure to liquid, mist, and > 1000 ppm of ammonia gas or vapors. Neoprene or rubber gauntlet-type gloves, ammonia resistant clothing (overalls, jacket, and boots) or vapor suit, as required.

Eye Protection Requirements: Use chemical (indirectly vented) goggles when there is a potential for contact with liquid or mist. A full-face shield may be worn over goggles for additional protection, but not as a substitute for goggles.

Other Protective Equipment: Safety shower and eyewash fountain should be provided in the ammonia handling area. In agricultural distribution, provide easily accessible shower and/or at least 100 gallons of clean water in open top container (check regulations). When transporting, provide at least 5 gallons of readily accessible, clean water and personal protective equipment.

Engineering Controls: Maintain adequate ventilation to keep ammonia concentrations below applicable standards when possible.

NOTE: See Section 2 for regulatory exposure guidelines.
9. PHYSICAL AND CHEMICAL PROPERTIES

Physical Form: .. Gas (liquid under pressure)
Color: .. Colorless gas and liquid, forms white vapor in contact with moisture
Odor: .. Strong pungent penetrating odor, ammonia.
Boiling Point: -28.1°F
Melting point: -107.9°F
Ph: ... 11
Solubility: .. 89.9 g/100 cc (@ 32°F)
Specific Gravity: 0.62 (@ 60°F)
Vapor Density: 0.60 (@ 60°F)
Vapor Pressure: 93 psig (@ 60°F)
% Volatile by Volume: 100
Molecular Weight: 17.03
Density: ... 5.14 lb. per gallon (@ 60°F)
Critical Temperature: 271°F
Critical Pressure: 1636 psia

10. REACTIVITY

Stability: ... This is a stable material.
Hazardous Polymerization: Will not occur.

Decomposition: Hydrogen is released on heating above 850°F (454°C). The decomposition temperature may be lowered to 575°F (300°C) by contact with certain metals such as nickel. At 1290°F or in presence of electric spark ammonia decomposes into nitrogen and hydrogen gases, which may form a flammable mixture in the air.

Incompatibilities:
 a. Ammonia has potentially explosive or violent reactions with interhalogens, strong oxidizers, Nitric Acid, Fluorine, Nitrogen Oxide, etc. (see note following)
 b. Ammonia forms sensitive explosive mixtures with air and hydrocarbons, Ethanol and Silver Nitrate, Chlorine, etc. (see note following)
 c. Explosive products are formed by the reaction of ammonia with Silver Chloride, Silver Oxide, Bromine, Iodine, Gold, Mercury, Tellurium Halides, etc. (see note following)
 d. Ammonia is incompatible or has potentially hazardous reactions with Silver, Acetaldehyde, Acrolein, Boron, Halogens, Perchlorate, Chloric Acid, Chlorine Monoxide, Chlorites, Nitrogen Tetroxide, Tin, Sulfur, etc. (see note following)

NOTE: The incompatibilities above are a partial list taken from two books by Sax & Lewis: “Dangerous Properties of Industrial Materials”, 7th ed., 1989 and “Hawley’s Condensed Chemical Dictionary”, 11th ed. 1987, both published by Van Nostrand Reinhold Company, New York. It is recommend that if additional information is needed, refer to these and other published information.
11. **TOXICOLOGICAL INFORMATION**

- **LC₅₀** Human: 5000 ppm for 5 minutes
- **LC₅₀** Mouse: 4230 ppm for 1 hour
- **LC₅₀** Rabbit: 7 g/m² for 1 hour
- **LD₅₀** Rat: 350 mg/kg
- **LC₅₀** Goldfish / Yellow Perch: 2.0 to 2.5 ppm / 1 to 4 days
- **Tₜₑ** Fathead Minnow: 8.2 ppm / 96 hours
- **LC₁₀₀** Crayfish: 80 ppm / 3 days

12. **ECOLOGICAL INFORMATION**

 a. Ammonia is harmful to aquatic life in very low concentrations and may be hazardous if it enters water intakes.
 b. Local health and wildlife authorities, as well as operators of water intakes in the vicinity, should be notified of water releases.
 c. Waterfowl toxicity may occur at elevated concentrations.
 d. Ammonia does not concentrate in the food chain.
 e. The conversion of ammonia to nitrites/nitrates by bacteria in aquatic systems can reduce the concentration of dissolved oxygen (referred to as nitrogenous oxygen demand).
 f. Effect on water treatment process: Chlorination will produce chloramines, which are more readily detected by taste and odor.

13. **DISPOSAL CONSIDERATIONS**

Waste must be disposed of in accordance with federal, state, and local environmental control regulations.

14. **TRANSPORTATION INFORMATION**

- D.O.T. Shipping Name: Ammonia, anhydrous
- D.O.T. Hazard Class: Non-Flammable Gas, Class 2.2
- U.N. / N.A. Number: 1005
- D.O.T. Placard: Non-Flammable Gas 2.2, color: green
- D.O.T. Special Provision: 13, “Inhalation Hazard”
- OSHA Label Required: Yes
- RQ (Reportable Quantity): 100 pounds
- STCC Number: 4904210

15. **REGULATORY INFORMATION**

OSHA: This product is considered a hazardous material under criteria of the Federal OSHA Hazard Communication Standard 29 CFR 1910.1200.
SARA TITLE III:
 a. EHS (Extremely Hazardous Substances) List: Listed (EPA, 1992a)
 Note: Chemicals on the original list that do not meet the toxicity criteria but
 because of their high production volume and recognized toxicity are considered
 chemicals of concern ("other chemicals").
 b. RQ (Reportable Quantity): 100 pounds
 c. TPQ (Threshold Planning Quantity): 500 pounds
 d. Regulation: "Emergency Planning and Notification" - 40 CFR Part 355
 (Appendices A and B).
 e. Section 313: "Specific Toxic Chemical Listings" - 40 CFR Part 372
 Ammonia is subject to the reporting requirements of Section 313 and 40 CFR Part
 372. Oklahoma Fire Service Training is required by 40 CFR 372.45 to notify
 certain customers as to which of its mixture or trade name products contain those
 chemicals. The purpose of that notification is to ensure that facilities that may be
 subject to reporting requirements of Section 313 and that use products of unknown
 formulation will have knowledge that they are receiving products that contain
 chemicals subject to those reporting requirements.

CERCLA Hazardous Substances List:
 a. RQ (Reportable Quantity): 100 pounds
 b. Regulation: "Designation, Reportable Quantities, Notification" - 40 CFR 302

TSCA Inventory:
 a. Listed (RTECS)

16. OTHER INFORMATION

Dec. 18, 1995: The MSDS was rewritten to comply with ANSI Standard Z400.1-1993.

Nov. 5, 1996: Updated isolation and protection distances in Section 6.

Feb. 16, 1999: Revised to make minor typographical and editorial changes.

April 1, 2001: Revised to change the mailing address of Oklahoma Fire Service Training
 and to make minor typographical and editorial changes.

The information and recommendations herein are taken from data contained in independent,
industry-recognized references including but not limited to NIOSH, OSHA, ANSI, NFPA, D.O.T.
ERG, Global Engineering Documents, MEDITEXT, HAZARDTEXT, SARATEXT, CHIRS,
OHM/TADS, and IRIS. Thus, Oklahoma Fire Service Training makes no guarantee, warranty or
other representation concerning this substance, since conditions of its use are beyond the control of
the company. Oklahoma Fire Service Training disclaims any liability for loss or damage incurred in
connection with the use of this substance.